首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28862篇
  免费   1270篇
  国内免费   297篇
化学   19488篇
晶体学   279篇
力学   1005篇
综合类   8篇
数学   2565篇
物理学   7084篇
  2023年   174篇
  2022年   141篇
  2021年   527篇
  2020年   487篇
  2019年   530篇
  2018年   398篇
  2017年   366篇
  2016年   819篇
  2015年   722篇
  2014年   919篇
  2013年   1662篇
  2012年   2129篇
  2011年   2348篇
  2010年   1434篇
  2009年   1243篇
  2008年   1907篇
  2007年   1776篇
  2006年   1689篇
  2005年   1555篇
  2004年   1358篇
  2003年   1063篇
  2002年   1057篇
  2001年   699篇
  2000年   603篇
  1999年   379篇
  1998年   283篇
  1997年   306篇
  1996年   330篇
  1995年   261篇
  1994年   280篇
  1993年   283篇
  1992年   270篇
  1991年   211篇
  1990年   158篇
  1989年   143篇
  1988年   148篇
  1987年   126篇
  1986年   95篇
  1985年   174篇
  1984年   122篇
  1983年   96篇
  1982年   121篇
  1981年   90篇
  1980年   80篇
  1978年   84篇
  1977年   88篇
  1976年   97篇
  1975年   102篇
  1974年   82篇
  1973年   104篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
The glow curve structures for LiF:Mg,Cu,Na,Si TL detectors with various dopant concentrations and sintering temperatures were investigated for the improvement of the glow curve structure and sensitivity of the TL detector. The dopant concentrations were varied over the following ranges: Mg (0–0.25 mol%), Cu (0–0.07 mol%), Na and Si (0–1.5 mol%). With increasing Cu concentration, the intensity of the main peak was intensified and reached a maximum at a concentration of 0.05 mol%. The high-temperature peak was reduced. The dependency of the main peak intensity on the Mg concentration exhibits a sharp maximum at 0.2 mol%. The intensity of the high-temperature peak tends to rise slightly with increasing Mg concentration. It was found that the optimum concentrations of the dopants in the LiF:Mg,Cu,Na,Si TL material are Mg: 0.2 mol%, Cu: 0.05 mol%, Na and Si: 0.9 mol%. The dependency of the main peak intensity on sintering temperature exhibits a very sharp maximum at 830°C. The high-temperature peak was rapidly reduced after 825°C.  相似文献   
42.
Water‐soluble poly(ester‐carbonate) having pendent amino and carboxylic groups on the main‐chain carbon is reported for the first time. This article describes the melt ring‐opening/condensation reaction of trans‐4‐hydroxy‐N‐benzyloxycarbonyl‐L ‐proline (N‐CBz‐Hpr) with 5‐methyl‐5‐benzyloxycarbonyl‐1,3‐dioxan‐2‐one (MBC) at a wide range of molar fractions. The influence of reaction conditions such as catalyst concentration, polymerization time, and temperature on the number average molecular weight (Mn) and molecular weight distribution (Mw/Mn) of the copolymers was investigated. The polymerizations were carried out in bulk at 110 °C with 3 wt % stannous octoate as a catalyst for 16 h. The poly(ester‐carbonate)s obtained were characterized by Fourier transform infrared spectroscopy, 1H NMR, differential scanning calorimetry, and gel permeation chromatography. The copolymers synthesized exhibited moderate molecular weights (Mn = 6000–14,700 g mol?1) with reasonable molecular weight distributions (Mw/Mn = 1.11–2.23). The values of the glass‐transition temperature (Tg) of the copolymers depended on the molar fractions of cyclic carbonate. When the MBC content decreased from 76 to 12 mol %, the Tg increased from 16 to 48 °C. The relationship between the poly(N‐CBz‐Hpr‐co‐MBC) Tg and the compositions was in approximation with the Fox equation. In vitro degradation of these poly(N‐CBz‐Hpr‐co‐MBC)s was evaluated from weight‐loss measurements and the change of Mn and Mw/Mn. Debenzylation of 3 by catalytic hydrogenation led to the corresponding linear poly(ester‐carbonate), 4 , with pendent amino and carboxylic groups. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2303–2312, 2004  相似文献   
43.
To study living anionic polymerization, 3‐(triethylsilyl)propyl isocyanate (TEtSPI) monomer was synthesized by hydrosilylation of allylamine with triethylsilane and treatment of the resulting amine with triphosgene. The polymerization of TEtSPI was performed with sodium naphthalenide (Na‐Naph) as an initiator and in the absence and presence of sodium tetraphenylborate (NaBPh4) as an additive in tetrahydrofuran (THF) at ?78 and at ?98 °C. A highly stabilized amidate anion for living polymerization of isocyanates was generated for the first time with the combined effect of the bulky substituent and the shielding action of the additive NaBPh4, extending the living character at least up to 120 min at ?98 °C. Even the anion could exist at ?78 °C for 10 min. A block copolymer, poly(n‐hexyl isocyanate)‐b‐poly[(3‐triethylsilyl)propyl isocyanate]‐b‐poly(n‐hexyl isocyanate), was synthesized with quantitative yields and controlled molecular weights via living anionic polymerization in THF at ?78 °C for TEtSPI and ?98 °C for n‐hexyl isocyanate, respectively, with Na‐Naph with three times of NaBPh4 as a common ion salt. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 933–940, 2004  相似文献   
44.
Pyridine‐2‐carboximidates [methyl ( 1a ), ethyl ( 1b ), isopropyl ( 1c ), cyclopentyl ( 1d ), cyclohexyl ( 1e ), n‐octyl ( 1f ), and benzyl ( 1g )] were prepared from the reaction of 2‐cyanopyridine with the corresponding alcohols. Cyclopentyl‐substituted 1d was found to be a highly effective ligand for copper‐catalyzed atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA). For example, the observed rate constant for a CuBr/ 1d catalytic system was found to be nearly twice as high as the cyclohexyl‐substituted CuBr/ 1e catalytic system [kobs = (1.19 vs 0.56) × 10?4 s?1). The effects of the solvents, temperature, catalyst/initiator, and solvent/monomer ratio on the ATRP of MMA were studied systematically for the CuBr/ 1d catalytic system. The optimum condition for the ATRP of MMA was found to be a 1:2:1:400 [CuBr]o/[ 1d ]o/[ethyl 2‐bromoisobutyrate]o/[MMA]o ratio at 60 °C in veratrole solution, which yielded well‐defined poly(MMA) with a narrow molecular weight distribution of 1.14. The catalytically active copper complex 2d was isolated from the reaction of CuBr with 1d . Narrow molecular weight distributions as low as 1.06 were achieved for the CuBr/ 1d catalytic system by employing 10% of the deactivator CuBr2. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2747–2755, 2004  相似文献   
45.
Inorganic–organic hybrid polymers have been developed and tested for evaluation in optical and electrical applications. Although hybrid inorganic–organic polymers can be synthesized by sol–gel chemistry at first, the physical properties of hybrid inorganic–organic polymers are changed during thin film-making processes, that is, photocuring and thermal curing. To investigate the effect of photoinitiator on the material properties during processing, a model system containing methacrylic groups as organically polymerizable units was selected. The conversion of CC double bond of methacrylic groups depending on some kinds of photoinitiator quantities was characterized by Fourier transform infrared spectroscopy. It was confirmed to correlate the degree of CC double bond conversion with the refractive indices. Thermodynamically, the enthalpy of the photopolymerization of hybrid polymer was investigated by UV–DSC. UV–DSC spectra showed the exothermic nature of photopolymerization of ORMOCER® to be in dependence of photoinitiator quantities. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1979–1986, 2004  相似文献   
46.
A series of polyimides were synthesized from 2,2‐Bis(3,4‐dicarboxyphenyl)hexafluoropropane, 2,2‐bis(3‐amino‐4‐hydroxyphenyl)‐hexafluoropropane, and 4,4′‐oxydianiline by chemical imidization. The effects of the diamine ratios on the properties of the films were evaluated through the study of their thermal, electrical, and morphological properties. All the polymers exhibited better solubility in most of the organic solvents and hence were easily processable. Polyimides with more 2,2‐bis(3‐amino‐4‐hydroxyphenyl)‐hexafluoropropane exhibited better solubility and a low refractive index, which is highly desired for microelectronic applications. The dielectric constant and birefringence were strongly dependent on the fluorine content. With an increase in the fluorine substitution, both the dielectric constant and birefringence decreased. All the polymers exhibited high thermal stability (>400 °C). The absence of crystalline melting in differential scanning calorimetry and broad wide‐angle X‐ray diffraction patterns revealed the amorphous nature of the polymers, which was due to the presence of bulky CF3 groups and hinged ether linkages of the diamine component. The residual stress values decreased with an increase in the 4,4′‐oxydianiline content, and the results were in agreement with the dielectric constant. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4303–4312, 2004  相似文献   
47.
A series of metallodendrimers, assembled by means of bis(terpyridinyl)Ru(II) connectivity on poly(propylene imine) dendrimer scaffolds, with homogeneous or heterogeneous surfaces, were prepared. Differential scanning calorimetry and thermogravimetric analysis were used to determine their thermal behavior, glass‐transition temperatures, and the decomposition kinetics and temperatures; no synergy effects for these properties were observed for the heterogeneously surfaced constructs in contrast to the corresponding homogeneously coated materials, which exhibited different values depending on their surface functionalities. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1487–1495, 2004  相似文献   
48.
In order to elucidate the distributions of the elements among the particulate and dissolved fractions in pond water, major-to-ultratrace elements in different sizes of particles as well as in the filtrate passed through the 0.05 microm filter were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). The different sizes of particle samples (ca. 100-300 microg each) were collected on the membrane filters with pore sizes of 10, 3.0, 1.2, 0.4, 0.2 and 0.05 microm, respectively, by sequential fractionation. As a result, about 40 elements in different sizes of particles could be determined by ICP-AES and ICP-MS, after acid digestion using HNO3/HF/HClO4. Then, the fractional distribution factors of major-to-ultratrace elements among the particulate and dissolved fractions were estimated from the analytical results. The total contents of Al, Fe, Ti, REEs (rare earth elements), Bi, Pb and Ag in the particulate fractions (larger than 0.05 microm) were more than 80-90%, while those of Ca, Sr, Cs, W, Ba, Mn and Co in the dissolved fraction, which corresponded to the filtrate passed through the 0.05 microm membrane filter, were more than 80%. It was further found that the fractional distributions of Cu and Zn in the dissolved fraction were ca. 50%. In addition, the enrichment factors (EFs) of the elements in the particulate fractions with particle sizes of 3.0-10 microm and 0.05-0.2 microm were estimated to elucidate their geochemical characteristics in natural water.  相似文献   
49.
Electrospinning of cellulose acetate (CA) in a new solvent system and the deacetylation of the resulting ultrafine CA fibers were investigated. Ultrafine CA fibers (∼2.3 μm) were successfully prepared via electrospinning of CA in a mixed solvent of acetone/water at water contents of 10–15 wt %, and more ultrafine CA fibers (0.46 μm) were produced under basic pH conditions. Ultrafine cellulose fibers were regenerated from the homogeneous deacetylation of ultrafine CA fibers in KOH/ethanol. It was very rapid and completed within 20 min. The crystal structure, thermal properties, and morphology of ultrafine CA fibers were changed according to the degree of deacetylation, finally to those of pure cellulose, but the nonwoven fibrous mat structure was maintained. The activation energy for the deacetylation of ultrafine CA fibers was 10.3 kcal/mol. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 5–11, 2004  相似文献   
50.
The desorption behavior of a surfactant in a linear low‐density polyethylene (LLDPE) blend at elevated temperatures of 50, 70, and 80 °C was studied with Fourier transform infrared spectroscopy. The composition of the LLDPE blend was 70:30 LLDPE/low‐density polyethylene. Three different specimens (II, III, and IV) were prepared with various compositions of a small molecular penetrant, sorbitan palmitate (SPAN‐40), and a migration controller, poly(ethylene acrylic acid) (EAA), in the LLDPE blend. The calculated diffusion coefficient (D) of SPAN‐40 in specimens II, III, and IV, between 50 and 80 °C, varied from 1.74 × 10?11 to 6.79 × 10?11 cm2/s, from 1.10 × 10?11 to 5.75 × 10?11 cm2/s, and from 0.58 × 10?11 to 4.75 × 10?11 cm2/s, respectively. In addition, the calculated activation energies (ED) of specimens II, III, and IV, from the plotting of ln D versus 1/T between 50 and 80 °C, were 42.9, 52.7, and 65.6 kJ/mol, respectively. These values were different from those obtained between 25 and 50 °C and were believed to have been influenced by the interference of Tinuvin (a UV stabilizer) at elevated temperatures higher than 50 °C. Although the desorption rate of SPAN‐40 increased with the temperature and decreased with the EAA content, the observed spectral behavior did not depend on the temperature and time. For all specimens stored over 50 °C, the peak at 1739 cm?1 decreased in a few days and subsequently increased with a peak shift toward 1730 cm?1. This arose from the carbonyl stretching vibration of Tinuvin, possibly because of oxidation or degradation at elevated temperatures. In addition, the incorporation of EAA into the LLDPE blend suppressed the desorption rate of SPAN‐40 and retarded the appearance of the 1730 cm?1 peak. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1114–1126, 2004  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号